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1 Introduction

1.1 The SimSonic Suite

SimSonic is freely available 3rd party software suite for the simulation of ultrasound propagation,
based on finite-difference time-domain (FDTD) computations of the elastodynamic equations. It is
intended as a tool for researchers and teachers communities. The SimSonic suite consists of several
compiled programs and C source codes, free for use and download from www.simsonic.fr, under the
GNU GPL license. In exchange for free access to the SimSonic suite, the users are asked to make
proper reference (in their research publications or any other types of oral or written communication)
to www.simsonic.fr and to Bossy et al., JASA 115, 2314-2324, 2004 (in which SimSonic has been used
for the first time).

The development of SimSonic was initiated in 2003 by Emmanuel Bossy during his PhD work at the
Laboratoire d'Imagerie Paramétrique (CNRS-University Paris 6) in Paris, France [1]. Since then, Sim-
Sonic has been maintained by Emmanuel Bossy, now at Institut Langevin, CNRS-ESPCI ParisTech,
Paris, France, and has regularly been enriched with new options and versions. SimSonic is currently
being used by several research laboratories (references). The various versions of SimSonic correspond
to different characteristics in terms of spatial dimensions and symmetries, but are otherwise based on
the same physical model. In short, SimSonic currently models linear propagation in both fluid and
solid media, which can be anisotropic and heterogeneous. Versions with absorption exist, but are still
under development and beta-testing, and are therefore not described in this document.

1.2 About this document

This document is the user’s guide for the SimSonic2D program, the 2-D version (on a cartesian mesh)
of the SimSonic software suite. It describes the physical model and computation methods on which
SimSonic2D is based, and explains how to use SimSonic2D. It also contains a tutorial section, where
various examples of simulation are described in detail, from the generation of the input files to the
visualization of the results. This version of this user’s guide is November 20, 2012, and relates to
the 2012.04.26 release of SimSonic2D. This document regularly evolves, in particular based on users
feedback. Please feel free to send all relevant comments and questions to simsonic.software@gmail.com

1.3 Quick overview of using SimSonic2D

SimSonic2D consists of a single binary executable file (either for Windows or Linux based systems).
To run a simulation, one simply has to called SimSonic2D from a line command, with a simulation
directory as argument. The simulation directory contains both input and output files (see 3.1 for a
detailed description of the various file). Running a simulation consists in the following steps

e Preparing input files. The file "Parameters.ini2D” is a simple text file that contains most of
the simulation parameters. The geometry of the various media is coded in a binary file, Geom-
etry.map2D, as an indexed image. Various other binary files may also be needed, to describe
input signals for instance. All the input files must be contained in the same directory. A matlab
toolbox is provided with functions to write the binary files from matlab data (vectors or matrix)

e Calling SimSonic2D via the command line, with the simulation directory as argument. On
windows for instance, the call would simply look like:

SimSonic2DPath\SimSonic2D_win64_omp.exe SimulationDirectory\
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e Analyse output files (signals or snapshots) that are generated in the simulation directory. A
matlab toolbox is provided with functions to read the binary files to matlab data (vectors or
matrix).

2 Physical Model

2.1 Model Equations

In this section, the vector components of vector a are noted a; where subscripts ¢ = {1,..,d} refer to
the direction of space, with d the space dimension (d = 2 for SimSonic2D). SimSonic2D computations
are based on the following system of elastodynamic equations, expressed in cartesian coordinates :
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x and ¢ are the space and time variables. p(x) is the mass density and c(x) is the fourth-order rigidity
tensor. The knowledge of these parameters entirely defines the material properties and geometry of
the considered media. {v;(x,t)} are the vector components of the particle velocity field and {7;;(x,t)}
are the components of the stress tensor T(x,t). These are the unknown quantities that SimSonic
computes. {f; and 6;; are source terms. {f;} are the vector components of force sources and {;;}
are the tensor components of strain rate sources. Equations 1 and 2 describe the propagation of
mechanical waves in continous media which obeys Hooke’s law (Eq.2). This formulation based on the
rigidity tensor allows equally taking into account anisotropic solid media and fluid media. Absorption
is not taken into account in this model.

The symmetric rigidity tensor is usually given using Voigt notation, which allows formulating Eq. 2
under matrix form. In 2-D, such formulation writes:
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The form of the rigidity tensor used above is limited to a number of crystal symmetries (orthorhombic,
hexagonal, cubic, isotropic and some tetragonal class of symmetry [4]). SimSonic2D does currently
not take into account other symmetries, but straightforward modifications of the code would allow to
deal with higher order symmetries if needed.

2.2 FDTD discretization

SimSonic implements a finite-difference time-domain (FDTD) resolution of Egs. 1 and 2. Briefly,
finite-difference methods consist in solving partial differential equations by approximating partial
derivatives of continous functions by finite-difference. Following a numerical scheme initially intro-
duced in electromagnetism by Yee in 1966 [7], and later applied in elastodynamics by Virieux [5, 6],
SimSonic uses central-difference approximations to the space and time partial derivatives. The FDTD
elastodynamic equations are obtain from Equations 1 and 2 by approximating all first-order deriva-
tives based on the following principle:
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In Egs. 5 and 6, At and Az are the time and spatial steps used to approximate time or spatial
derivatives according to 4. Accordingly, each variable in SimSonic2D (either velocity component or
stress tensor component) is implemented using a regular spatio-temporal mesh with time and spatial
steps of constant values At and Az. A careful reading of Egs. 5 and 6 further point out a fundamental
aspect of the Yee/Virieux numerical scheme implemented in SimSonic: the different components of
the velocity vector and stress tensor must be defined on staggered grids, both in space and time.



2.2.1 Temporal mesh

Regarding time: all velocity component are computed at the same instants, all stress components are
also computed at the same instants, but velocity and stress components are calculated at interleaved
instants relatively to each other. More specifically, the computation of a velocity (resp. tensor)
component at time t+ At is explicitly derived from its value at time ¢ and from values of the stress (resp.
velocity) components at time ¢+ At/2. This type of algorithm is often referred to as leapfrog algorithm.
It is illustrated on Fig. 1, which summarize how SimSonic (or any FDTD leapfrog algorithm) works:
the algorithm starts its computation from some initial conditions given by the knowledge of the velocity
field at time ¢t = 0 and of the stress tensor field at time ¢ = At/2. In SimSonic, the first computations
corresponds to compute the velocity field at time t = At from the velocity field at time time ¢t = 0
and the stress tensor field at time ¢t = At/2.

v | v | v ‘
T T 1 |
EAtE

Figure 1: Principle of the leapfrog algorithm: staggered grids in time

2.2.2 Spatial mesh

As discussed in the previous section, the velocity and stress fields are staggered in time. Moreover, the
different variables are also staggered in space, such as each spatial finite difference may effectively be
centered. Dropping the temporal dimension, the only way to spatially organize the various variables
is shown on Fig. 2:
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Figure 2: Staggered grids in space

As observed from Fig. 2, only T71 and T55 happens to be at the same positions. This is coherent with
the fact that in a fluid medium, 777 and T52 must actually be the same values, equal to the opposite
of the pressure in the fluid.

2.2.3 Stability condition

Intuitively, both At and Az must be chosen small enough to provide sufficiently smooth representations
of the computed field (see next section). The smallness of At and Az conditions the accuracy of the
results, that is the degree of approximation introduced by the numerical method. On the other hand,
it can be shown that At and Az cannot be chosen independently, and must obey a so-called stability



condition. The stability condition (commonly called CFL condition, from the initials of Courant,
Friedrichs and Levy) for the numerical scheme described above is given by

(7)

where ¢4, is the largest speed of sound amongst all speeds of sound presents in the simulation
medium, and d is the space dimension (d = 2 for SimSonic2D).

2.2.4 Choice of grid steps

In practice, one usually first chooses the spatial step-size Ax, based on accuracy criteria, and then
uses the CFL to derive At and ensure stability. Accuracy and stability are completely independent
concepts: a simulation may be stable while providing poor accuracy for coarse meshes. On the other
hand, even very fine grids will yield instability if the CFL condition is not fulfilled.

The accuracy of a FDTD simulation depends on a number of factors, in addition to the step-size Ax:
sources of error not only involve the approximation of derivative by finite difference, but also cumula-
tive errors due to the iterative nature of the method. Therefore, the longer the simulation duration, the
larger the errors. Equivalently, the larger the propagation distance, the larger the errors. One major
effect generated by most FDTD schemes is numerical dispersion, i.e. the dependence of phase veloc-
ity on frequency due to the numerical method. As an important consequence, simulated ultrasound
pulses are increasingly distorted during propagation. Accuracy criteria in FDTD therefore include
tolerance on waveform distortion, as well as on wave amplitude. The obtained accuracy depends both
on propagation distances and simulation duration. Note that numerical dispersion is not specific of
finite difference schemes but is an artifact to control with most numerical methods, in particular those
based on a discretization of the propagation domain.For second-order FDTD schemes such as used in
SimSonic, a minimum spatial-step size of typically A\/10 (i.e. ten points per wavelength) is required.
For propagation distances over several tens of wavelengths, step size as small as A/20 may be required,
depending on the desired accuracy. Moreover, for pulsed ultrasound, the accuracy strongly depends
on the bandwidth: for a given central frequency, short (i.e. broadband) pulses will be more distorted
than quasi-harmonic waves, as a value of Ax of one tenth of the central wavelength will correspond
to less points per wavelength for the higher frequency content. For pulsed ultrasound, the number of
points per wavelength should be determined based on the desired accuracy for the highest significant
frequency content, which equivalently corresponds to a waveform distortion criterion. The choice of
Az is therefore highly subjective, and no general rules exist to determine Az. Ten grid points wave-
length should be considered a minimal requirement, that moreover remains rather subjective for pulsed
ultrasound. Note that for a homogeneous medium, the CFL condition turns the number of spatial
grid points per wavelength into number of temporal grid points per period, with some dimensionless
factor close to one. For simulations involving several media with different propagation velocities, one
has to consider the smallest wavelength (i.e. the smallest velocity) to choose Az. On the other hand,
the temporal step will be derived by use of the largest velocity. For a large range of velocities, such as
encountered for simulation in both soft tissue and bone, a consequence is that the number of spatial
grid points per smallest wavelength is significantly different from the number of temporal points per
period, which increases numerical dispersion. To compensate for this additional dispersion, simulation
involving significantly different velocities requires grid steps finer than that for homogeneous media.

Although Ax has to be small enough to fulfill accuracy requirement, it also has to be small enough in
order to correctly describe the geometry of propagation media. In FDTD methods, the use of regular



grids leads to “staircases” artifacts when originally smooth interfaces are discretized on such grids.
For instance, a plane interface that is not parallel to the coordinates axes, for instance, will have
some artificial roughness. In turn, this artificial roughness will create scattering, which amplitude
depends on the size of the “staircases” relatively to the wavelength. As for accuracy considerations in
homogeneous media, although for a different reason, Az has to be made small to decrease artificial
scattering.

In summary, the spatial-step size Ax of a simulation has to be small enough to both correctly describe
the geometry of the medium and minimize numerical dispersion. Practically, it is the computational
cost that bounds the value of Ax to some minimal value. For a space dimension d, memory require-
ments scales as h?: for fixed spatial physical dimensions, the number of points in the spatial mesh in
three dimensions for instance is multiplied by 23 = 8 when & is divided by 2. Moreover, because of the
CFL conditions, the computational time scales as Az%+1: dividing Az by a factor of 2 multiplies the
total number of calculations by 2371 = 16 for three-dimensional simulations. From the point of view
of computational efficiency, Ax must therefore be kept as large as possible, while being small enough

to fulfill accuracy requirements.

2.3 Wave generation

For the time-domain model described above, two approaches may be used to generate ultrasound
waves in the simulation domain. On one hand, the user may define sources that are active at some
points of the mesh during the simulation. On the other hand, the user may provide initial field values
at all grid points that will then evolve in time in source-free media. Note that it is also possible in
principle, though less frequent in practice, to use both source terms and initial conditions. The first
approach with sources can actually be further separated in two cases. Defining sources in the domain
may be done either by:

e forcing field values at some positions in space. At such points, the field is given by the user, not
calculated by the algorithm.

¢ adding source terms at some positions in space, as described by f; or 6;; in the model equation.
At such points, the field is different from the source term, and is calculated using the equations
with the sources terms.

These two ways of including sources in the model are very different: on the one hand, forcing field
values provides an easy way to generate a wave of know geometry and temporal waveform, but points
in space where field values are forced will act as scatterers for waves generated elsewhere. Using this
approach thus usually requires that the sources be turned off (the field values are not forced anymore
and obey the model equations) before any other wave (such as reflected waves) reach the source region.
Forced boundary conditions on part of the mesh boundary is often used to simulate a transducer in
contact with an object. On the other hand, a source term added to a field equation allows the linear
superposition at the source point of the generated wave with other waves, i.e. active regions are trans-
parent to waves generated elsewhere. One drawback of using source terms, except for some simple
geometry (such as generation of plane-like wave), is that the field values are usually not related in a
simple manner to the values of the source terms. When initial value conditions are used rather than
source term, section 2.2.1 indicate that initial conditions must be given both for the velocity fields
(at time ¢t = 0) and the stress tensor fields (at time ¢ = At/2). The approach based on initial value
conditions is well-suited for instance to start a simulation just before an incoming wave propagating
in a homogeneous medium (and of analytically known geometrical shape) is about to be scattered in



a complex manner by an object.

To conclude this section on wave generation, let us emphasize that the model equations presented
in section 2 do not model wave propagation within ultrasound transducers: in the current version of
SimSonic2D, transducers as piezo-electric materials are not taken into account as physically active
materials in the simulation domain, but are modeled by regions of space or boundary where field
values are forced or source terms are provided.

2.4 Boundary conditions

Handling a mesh in a computer means that meshes necessarily have a finite number of points, and
therefore numerical methods such as FDTD only solve the model equations in bounded regions of
space. Two situations may be considered :

(1) if the problem involves waves that are indeed physically confined within a bounded region of space,
as would be the case for a finite-size object in vacuum (into which no mechanical waves can propa-
gate), the mesh can be designed over the entire region of interest. In this case, the field variables on
the mesh boundaries must simply obey conditions that express the physics at the boundary. This has
to be done whether the problem is solved numerically on a mesh or analytically on the space continuum,;

(2) on the other hand, one may want to numerically solve wave propagation phenomena in unbounded
space, or modeled as such. This is the case for instance in the study of wave scattering by a solid
object immersed in an unbounded fluid. The modeling of such unbounded domain requires specific
boundary conditions, which role is to make the mesh boundaries transparent to waves incoming from
within the simulation region.

In situation (1), Simsonic2D offers four types of boundary conditions: stress-free boundary, rigid
boundary, mirror-symmetry boundary, mirror-antisymmetry. How these boundary solution are han-
dled in SimSonic2D is described later in section 3.2 where the various grids are defined. To account for
situation (2), SimSonic2D allows defining Perfecty-Matched Layers (PML) on the simulation frontiers.
It is out of the scope of this documentation to provide details on PMLs and their FDTD implementa-
tion, which can be found in [3] for the algorithm used in SimSonic2D. It is sufficient to say that PML
are additional layers leant against the simulation boundaries, as illustrated on Fig. 3 in the case of a
simulation grid with PML all around. PML are often referred to as the most convenient way to model
unbounded domains [2], while maintaining a reasonable computational cost.

Figure 3: Layout of the Perfectly Matched Layers around the central computation box



3 Description of SimSonic2D

3.1 Overview of input and output files

Parameters
.iniZD

% Required file
Geometry % & .snp2D
map2D
SimSonic2D
.sgl @
% .rcev2D
& Optional file
rev2D

Figure 4: Schematic overview of input (red and green) and output (gray) files involved in SimSonic2D.

As illustrated on Figure 4, SimSonic requires input files that entirely define a simulation and computes
output files. All input files must sit in a unique directory, which will also receive the output files during
the computations.

There are four types of input files:

Parameters.ini2D. This file, which name cannot be changed, is a file in raw text format. It contains
most of the information input by the user, such as the time and spatial steps, the simulation duration,
the types of results to record, information on the boundary conditions, sources, etc. It is described in
detail in section 3.4.

Geometry.map2D. This file, which name cannot be changed, is a bitmap file with a SimSonic
specific format described in section 3.3. Briefly, in contains a N1 x Ny image that uniquely defines the
geometry of the materials presents in the simulation. Each material is represented by a 8-bit value,
from 0 to 255.

.sgl or .rcv2D files These two types of files, which name can be chosen by the users, contain sig-
nals that describe sources in the simulation. The extension .sgl and .rcv2D corresponds to the two
possible format used by SimSonic, described in detail in appendix C. Files with extension .sgl contain
only a single waveform, that will be used by sources terms described in Parameters.ini2D. The .rcv2D
format corresponds to the format of signals received or emitted on 1D-array transducers. A .rcv2D
file not only contains the signals for each element of the array, but also all the array parameters such
as location, pitch, sampling frequency, etc. There may be as many input signals files as needed to
describe all the sources in the simulation.

There are two types of output files:
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.snp2D files One .snp2D file contains one ”image” of a particular field variable at one given time,
referred to as a “snapshot” in this documentation. It contains not only the field values, but also a
header with various information such as time, type of variable, spatial grid step, temporal grid step,
etc. The format of .snp2D files is given in detail in Appendix C and section 3.6 discusses how to read
.snp2D files using the matlab toolbox.

.rcv2D files The .rcv2D format corresponds to the format of signals received or emitted on 1D-array
transducers. A .rcv2D file not only contains the signals for each element of the array, but also all the
array parameters such as location, pitch, sampling frequency, etc. Section 3.5 discusses how to read
.rcv2D files using the matlab toolbox.

The specific formats of each file are described in detail in Appendix C. However, it is not necessary
to the users to be aware of those format: the Matlab toolbox provided with SimSonic2D contains all
the necessary .m files that allow reading data from SimSonic2D files to Matlab and writing data from
Matlab to SimSonic2D.

3.2 Grids in SimSonic2D

Grids layout and sizes. In SimSonic2D, the spatial dimensions of the simulation are entirely and
uniquely defined via the Geometry.map2D file. This file contains a Ni x Ny image that uniquely de-
fines the geometry of the materials presents in the simulation. Each material is represented by a 8-bit
value, from 0 to 255. However, as discussed in section 2.2.2, each field variable has its specific grid.
As a consequence, there are in principle different possibilities to define grids from a Ny x No image. It
is absolutely fundamental for SimSonic users to understand precisely how the rectangular simulation
grids are defined in SimSonic2D. From a N; X Ny image given in Geometry.map2D, SimSonic defines
the following grids for each field variables:

variable | dimensions X; x X
11,152 Ny x N
Tio (N1 + 1) X (N2 + 1)
U1 (Nl + 1) X Ny
V2 N7 X (N2 + 1)

The rationale for those dimensions is best understood when considering an example: Fig. 5 shows the
grids for a Geometry.map2D with a 4 x 7 image. It can be seen that the simulation boundaries are
lines which involve only normal components of the velocity (v; or v depending on the orientation of
the boundary) and T12. The checkerboard on Fig. 5 represents the 4 x 7 pixels of the image contained
in Geometry.map2D.

Field coordinates. The spatial layout of the grid is something very important that should always be
kept in mind when setting up a simulation: in particular, proper positioning of source terms and
measurement points can only be achieved with the grids layout in mind. The convention
used in SimSonic for the points coordinates are the following:

e the first element of a vector has an index of 0 (C language convention, as opposed to Matlab for
instance which uses index 1 for the first element of a vector).

11
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Figure 5: Ilustration of the grids dimensions for a ”4x7” simulation. The circled variables all have
coordinates (0,0). The variable in the square is v2(2,1). The checkerboard is only intended to help
visually identifying pixels of the Geometry.map2D file.

e All coordinates are integer numbers, and refers to a specific grid. As a consequence of the
staggered-grids layout, although 771(0,0), T12(0,0), v1(0,0) and v2(0,0) all have the same coor-
dinates, they corresponds to variables located at different positions in space (see circled variables
in Fig. 5).

Material properties for heterogeneous domain In SimSonic2D, the users define materials prop-
erties via a N1 x Ny image. As clear from 5, all variables except T71 and Ths are located at interfaces
between pixels of the N1 x Ny image, and cannot be “attached” to one pixel rather than others. It
may be seen from Eqgs. 6 and 5 that this requires defining averaged properties for values of the density
and values of cis.

e Density values are always required at the interface between two adjacent pizels, and are defined
as the arithmetic average of the density values defined by the user at each of the two pixels.

e 1o values are always required at points that belong to four adjacent pizels, and are defined as
the harmonic average of the cio values defined by the user at each of the four pixels.

3.3 The Geometry.map2D input file

This file, which name must not be changed, is a binary file with a specific format described in appendix
C. Briefly, in contains a Ni X Ny bitmap image that uniquely defines the geometry of the materials
presents in the simulation. Each material is represented by a 8-bit value, from 0 to 255. In practice,
the user may use the Matlab SimSonic2D toolbox to create a N1 X No matrix MAP of class uint8 and
call SimSonic2DWriteMap2D (MAP,’SimulationDirectory\Geometry.map2D’)

12



3.4 The Parameters.ini2D input file
3.4.1 Principle

The Parameters.ini2D file, which name must not be changed, is a file in raw text. It can be read and
edited with simple text editors such as wordpad under Windows or vi or emacs on Linux systems. As
a Matlab toolbox is provided to conveniently SimSonic, Matlab is relevant to read and edit Parame-
ters.ini2D. This file contains most of the information input by the user.

The way SimSonic reads this file is rather crude: SimSonic searches for pre-defined ”code” strings in
the text file, such as ”Grid Step” for instance. Once the line containing the searched string is found,
SimSonic reads the parameter found at position 31 on the line: as a general rule, the position of the
parameter in Parameters.ini2D that is found after a ”code” string on a line should always remain
at the same position. The order in which the various ”code” strings and sections appears
in the file is not important. For all input parameters, SimSonic has built-in default values, that
are used if fields are missing in the Parameters.ini2D file. As a consequence, a Parameters.ini2D file
may have very little information, which helps in terms of readability, but the users must keep in mind
default values.

Specifications and requirements for the various parameters are detailed thereafter. Provided that the
user follows these requirements, any line of comments may be added to Parameters.ini2D to improve
its readability. Although not mandatory, it is recommended that any line of comments begins with
%, as it allows to easily discriminate between comments and input data when using Matlab to read
and edit Parameters.ini2D.

Important: the natural system of units for MHz ultrasonics is mm, ps and mg. In the following,
it is this system of units which is used, along with all the corresponding derived units (MHz, GPa,
etc.). However, any system of units consistent with this one (such as stress and velocity numerical
values are unchanged) may be used. An example of a such a system, relevant to geophysics, is given
in appendix A.

The following sections describe in detail the various parameters contained in Parameters.ini2D.

3.4.2 General parameters

Grid Step is the value of the spatial grid step Az , expressed in mm. [Default=0.1]

Vmax is a speed of sound value that must be larger that any encountered speed of sound in the
simulation domain, expressed in mm.us~!. This value is extremely important, as it is used by
SimSonic to derive the time step AT from Az, in accordance with the CFL stability condition
(see DeltaT Coefficient thereafter). Note that Vmax may be different from the actual largest
speed of sound in the simulation, provided that the CFL condition remains verified.[Default=1.5]

CFL Coefficient is the value of a multiplicative coefficient o used to compute the time step At,
according to the following equation [Default=0.99]:

Az

At=a X ——
\/i'vmax

(8)
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If Vinax does correspond to the actual largest speed of sound in the simulation, then the CFL
condition requires that o < 1. In practice, this value should be strictly less than one, 0.99 for
instance.

As a consequence of Eq. 8, the user controls At through both v and Vy,ax. In most situation, the
user will choose V.« as the exact value for the largest speed of sound present in the simulation,
and a = 0.99. However, if a user wants to run several simulations with different media (such as
a simulation with scatterers and a reference simulation without scatterers), but with the same
At, he/she should use the same V.« and « for all the simulations. Most importantly, when
a user makes a signal files (.sgl file for instance), it should be kept in mind that the sampling
frequency used to build the signal must correspond to the value of At derived from Eq. 8 with
the parameters used in Parameterers.ini2D.

Simulation Length is the duration of the simulated propagation, expressed in ps[Default=0.0]. If
this value is not a multiple of the time step At, it is automatically rounded by SimSonic.

3.4.3 Boundary conditions

In SimSonic2D, the boundary conditions are given on four lines, named conventionally X1_low,
X1_high, X2 _low and X2_high as illustrated on Fig. 3.4.3

"
z b X
QI ! «— v, ! I =
N | 2
X I . T, e
. .
o e

ST — el

X1_high

Figure 6: Naming of the four domain boundaries in SimSonic2D

The behavior of each boundary is defined by a number:

e 0: a PML layer is defined against to the boundary. [Default value]
e 1 : the boundary behaves as a symmetric mirror

e 2 : stress-free boundary

e 3 : rigid boundary

e 4 : the boundary behaves as an anti-symmetric mirror
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If one or more PMLs are used, they will all have the same properties defined by the following parameters
(if no PML are used, these parameters are just not used by SimSonic2D):

PML Thickness is the PML dimension along the boundary normal, expressed in number of grid
step Az .[Default=40]

Vmax in PML is the highest of speed of sounds values in materials in contact with PML, expressed
in mm.us~!.[Default=1.5]

PML Efficiency is the requested PML efficiency, expressed in dB. A value of 80 dB means that the
wave reflected by the PML is expected to be 80 dB below the amplitude of a incident wave, in
the case of normal incidence. [Default=80]

In a continuous world, PMLs are perfectly matched layer. Because of the space discretization in
numerical methods such as FDTD or FEM (Finite Element Method), the PML loose their perfectness
in such approaches. As a consequence, PML in SimSonic have a finite efficiency, that can be expressed
as a coefficient of reflection. In practice, the maximum efficiency of a PML depends on the thickness
of the PML relatively to the wavelength of the incident wave. As a rule of thumb, a PML should
have a thickness of at least one wavelength in order to get an efficiency of several tens of dB for
normal incidence. If a user requests a theoretical efficiency larger than that reachable given the PML
thickness, the PML will simply not work as efficiently as expected. Moreover, the efficiency of the
PML decreases from its maximum in normal incidence to zero for grazing incidence. Setting the PML
parameters turns out to be very much based on the user experience. The PML in SimSonic2D are
built on the approach described in detail in [3].

3.4.4 Sources

In SimSonic2D, the geometry of a single source object is a line array, which properties are listed below
e The array is aligned in one of the direction of the mesh (direction 1 or 2)
e The array has N identical elements equally distributed

e Each element may consist of a unique grid point or have some width along the array alignment

There are currently two possible ways to define sources in SimSonic2D:

1. The user may define the geometrical parameters of an emitters array in the Parameters.ini2D
file. In this case, the signal emitted by all the elements are based on a unique signal defined in
a .sgl file, which name is specified in the definition of the array. Options in the definition of the
array allows applying delays or apodization coefficients on the elements of the array (see below).

2. The user may provide a .rcv2D file which contains all the information about the array geometry,
and as many signals as the number of elements in the array. The .rcv2D format also corresponds
to the format of signals received on 1D-array receivers transducers (hence the .rcv2D extension,
2D referring to SimSonic2D).

The parameters related to emission sources defined in the Parameters.ini2D file (case 1.) are listed
below:
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Type of Source Terms This value is set to 1 or 2 depending on how SimSonic2D considers source
signals: 1 corresponds to use input signals as source terms in the equations for the corre-
sponding variables. 2 corresponds to use input signals as forced values of the corresponding
variables.[Default=1]

Number of VAR arrays VAR may be either T11, T22, T12, V1 or V2. [Default=0] This value is
an integer indicating how many emitters arrays (for variables VAR) are going to be defined in
the following lines of the Parameters.ini2D file. The definition of one array is given on 5 lines,
and has the following structure:

-1 Filename

Array normal

x1_start x2_start

NBElts Pitch Width Apodisation Focus
Deflection Velocity

filename is the name of the .sgl file containing the signal that will be used by the array. -1
is an internal code for SimSonic2D, which must precede the file name. The file must be
located in the simulation directory.

Array normal This number, equal to 1 or 2, indicates the direction of the normal to the array.
1 therefore means that the array is aligned along direction 2, and vice versa.

x1_start expressed in grid coordinates (integer), is the coordinate along direction 1 of the array
element with the smallest coordinate.

x2_start expressed in grid coordinates (integer), is the coordinate along direction 2 of the array
element with the smallest coordinate.

NBEIlts Number N of (identical) elements in the array

Pitch expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements)

Width expressed in number of grid steps (integer), is the dimension of each element. All
the “Width” points belonging to a given element behaves in the same way during signal
emission.

Apodization 0 or 1. If set to 1, the signal amplitude on each element is apodized based on a
Hann window. This value must be set to 0 if the array only has one element.

Focus expressed in number of grid steps (integer). When different from 0, the array will focus
on an axis perpendicular to the array, going through the center of the array, at a distance
FocalLength from the array. This is done by SimSonic2D by delaying signal. This value
may be positive or negative. This value must be set to 0 if the array only has one element.

Deflection expressed in degrees (floating point number), controls the emission angle for plane
wave emission. It corresponds to add delays varying linearly with the element positions.
This value may be positive or negative.

Velocity is the velocity expressed in physical velocity units (floating point number, usually
mm/pus) used to calculate the delays for focusing or deflection. It should therefore corre-
spond to the velocity of the homogeneous medium in which the array is located.

The best way to understand how the arrays are positioned is to consider the examples provided
in section 3.4.5 on receivers arrays.

16


(http://en.wikipedia.org/wiki/Window_function#Hann_window)

Number of VAR Array Source Files VAR may be either T11, T22, T12, V1 or V2. [Default=0]
This value N is an integer indicating how many emitters arrays (for variables VAR) are go-
ing to be defined from .rcv2D files. Directly following this line, there must be N file names
corresponding to each array.

IMPORTANT REMARKS ON DEFINING SOURCES

The users has a complete freedom to define sources. However, consistency is not checked by the
software. The following points (not an exhaustive list...) should be kept in mind:

e The users should be aware that in a fluid medium, 777 always equal Ths. Therefore, sources
array for T7; and Tbs should always be identical. This is left to the responsibility of the user: if
not verified, the code will run, but the results should not be trusted.

e Particular attention should be paid for emitters arrays located on or close to domain boundaries.
If a user defines sources on a boundary for which the boundary condition forces values to zero,
the emitters array will be overridden by the boundary condition.

e Except for T7; and Tbs in fluids, there should normally be only one array defined at a given
location of the domain. In particular, a user will usually define either velocity sources or stress
sources at a given location.

3.4.5 Receivers

As for emitters arrays, the geometry of a single receiver object is a line array, which properties are
listed below :

e The array is aligned in one of the direction of the mesh (direction 1 or 2)
e The array has N identical elements equally distributed

e Each element may consist of a unique point or have some width along the array alignment

The information required from the user to define receivers arrays are the following :

Number of VAR Receivers arrays VAR may be either T11, T22, T12, V1 or V2. [Default=0]
This value is an integer indicating how many receviers arrays (for variables VAR) are going to
be defined in the following lines of the Parameters.ini2D file. The definition of one array is given
on 3 lines, and has the following structure:

Filename

Array normal

x1_start x2_start

NBElts Pitch Width

Filename is the name of the .rcv2D file in which the signals will be recorded. The file will be
written in the simulation directory.
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Array normal This number, equal to 1 or 2, indicates the direction of the normal to the array.
1 therefore means that the array is aligned along direction 2, and vice versa.

x1_start expressed in grid coordinates (integer), is the coordinate along direction 1 of the array
element with the smallest coordinate.

x2_start expressed in grid coordinates (integer), is the coordinate along direction 2 of the array
element with the smallest coordinate.

NBEIlts Number N of (identical) elements in the array

Pitch expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements)

Width expressed in number of grid steps (integer), is the dimension of each elements. The
signal recorded for one element with “Width” points corresponds to the sum of the signals
measured on each “Width”. In other words, each element is integrating over its width.

The best way to understand how the arrays are defined in SimSonic2D is to consider the following
examples :
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Nb of T11 Receivers Arrays : 2
T11_ONE.rcv2D

1

1 0

2 4 3
T11.TWO.rcv2D

1

3

4 1 1

Nb of T12 Receivers Arrays : 1

T12.rcv2D

2

0 0

2 2 2

Table 1: Example of Receivers section in Parameters.ini2D

+—> V2
° Tll ! T22
u T12

Figure 7: Position of the 3 arrays defined in Table 1

3.4.6 Snapshots

Snapshots Record Period expressed in physical time units (floating point number, usually us).
This value is the time interval between snapshots.[Default=1]

Record VAR Snapshots 0 or 1. VAR may be either T11, T22, T12, V1, V2 or V. 1 indicates
that VAR snapshots will be recorded with the time interval defined by Snapshots Record
Period.[Default=0]

Remark: The displacement velocity V = \/vf +v3 is not a field variable, but is derived in
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the software from the computations of v; and vo. However, as v1 and vy are not defined on the
same spatial grids, V is an averaged value over 4 pixels, defined by

2 2
vu,j):\/ (5 l01000) + 0ai1.901) + (5 oaio) + walicd 4 1))

V snapshots have size N1 x No. The value of V may be meaningless at interfaces between different
media, in particular fluid/solid interfaces where the tangential velocity is discontinuous.

3.4.7 Definition of material properties

The Geometry.map2D file contains N1 X Ny integer values that refer to media which material proper-
ties are described in the Parameters.ini2D file. These properties are defined for each material by the
users, in a list located between two lines that contains ”Starts Materials List” and ”Ends Materials
List”. One material is defined on one line with the following structure:

Index Density C11 €22 Cl12 C66

Index are integer values ranging from 0 to 255, and all the physical properties are real values defined
in consistent physical units (usually mg/mm? for density, GPa for Cag).
By default, all indexes correspond to materials with the following properties, typical of values for water:

Index 1 225 225 225 0

The user should make sure that all indexes present in Geometry.map2D are defined in the materials
list. All indexes with no explicit definition will have the default properties.

3.5 Signals files

As previously introduced in Section 3.1, they are two types of signal files used by SimSonic.

The .sgl files are input files that contain a unique signal intended to be used by arrays which pa-
rameters are directly defined in the Parameters.ini2D file. The format of .sgl file is described in Ap-
pendix C. In practice, the user may use the Matlab SimSonic2D toolbox to create a signal Waveform
of class double and call SimSonic2DWriteSgl (Waveform),’FileName’) to write .sgl files, or call
[Signal,NbPts]=SimSonic2DReadSgl(’signal.sgl’) to read .sgl files.

The .rcv2D files are either input or output files. The .rcv2D format corresponds to the format of
signals received or emitted on 1D-array transducers. A .rcv2D file contains all the geometrical param-
eters required to define an array (see sections 3.4.4 and 3.4.5), as well as the temporal grid step, the
spatial grid steps, the number of points in the recorded signals, and the signals corresponding to each
elements. The format of .rcv file is described in Appendix C.

In practice, the user may use the Matlab SimSonic2D toolbox to create and read .rcv2D files. From
a matlab structure array , the user may call SimSonic2DWriteRcv2D(array),’FileName’) to write
a 'FileName’ file with .rcv2D format. A Filename file with .rcv2D format may be read into a matlab
structure array by calling array=SimSonic2DReadRcv2D(’FileName’).
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3.6 Snapshots files

As previously introduced in Section 3.1, SimSonic2D uses .snp2D files to record snapshots of field
variables at a given time. The .snp2D format, described in Appendix C, contains not only the field
values, but also a header with the following information: dimensions of the snapshot (depending on
the recorded variables, see section 3.2), time of the snapshot, temporal grid step and spatial grid
step. In practice, the user may use the Matlab SimSonic2D toolbox to read .snp2D files into a matlab
structure SNAPSHOT by calling SNAPSHOT=SimSonic2DReadSnp2D (FILENAME).

3.7 Operating Systems and memory requirements
3.7.1 Operating systems

SimSonic is programed in C, and can therefore be compiled and executed on any platform, using
operating systems such as Windows or Linux. SimSonic’s code includes OpenMP directives, allowing
SimSonic to run in parallel on several CPUs sharing a common memory. Users may find several pre-
compiled executables on www.simsonic.fr, for both Windows and Linux systems and both 32-bit and
64-bit versions. SimSonic does currently not support MPI, and can therefore be ran only on clusters
of CPU sharing a common RAM memory.

3.7.2 Memory requirements

The dimensions of SimSonic simulations are only limited by the available RAM. Simulations that
requires more than typically 4 GB of RAM must be ran with 64-bit versions of SimSonic on 64-bit
operating systems. Simulations with requirement below typically 2 GB may be run on 32-bit systems
with 32-bit version of SimSonic.

The RAM needed for a simulation with grid dimensions N1 X Ny and with a PML thickness of W grid
points can be approximated by the following formula:

20
10242
This formula holds when SimSonic computes fields variables with float precision (4 bytes). Although
it is generally not needed in terms of precision, SimSonic may also used double precision (8 bytes), in
which case the memory requirement is twice as that indicated in the above formula.

RAM(MB) = X [Ny Ny 4 4W? + 2W (N7 + Ny)] (9)

3.8 How to run a simulation

Running a simulation is straightforward: once all the required input files (Parameters.ini2D, Geome-
try.map2D, .sgl and/or .rcv2D) have been created and placed in a directory named SimulationDirec-
tory, the user simply has to launch SimSonic2D from a command line with SimulationDirectory as
argument, immediatly followed by a forward slash “/” or reverse slash ”\”, depending on the operating
system. On Windows, the command line would look like

SimSonic2DPath\SimSonic2D_win64_omp.exe SimulationDirectory\

On Linux, the command would look like
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SimSonic2DPath/SimSonic2D_gcc64_omp SimulationDirectory/

Windows-compiled versions are provided with or without OpenMP capabilities. For the OpenMP ver-
sions, the user may indicate the number of processors to use by setting the value of OMP_NUM_THREADS.
For instance, to use two processors, use the following command line BEFORE running SimSonic2D:

SET OMP_NUM_THREADS=2

If this value is not set explicitly, the program will use the largest number of processors available.

The provided Linux-compiled version is for 64-bit systems with OpenMP. The number of processor
to use can also be set by the user, in a way that usually depends on how jobs are launched on the system.

Once a simulation has been successfully launched, the software outputs information, either directly
on the screen or in an output file, depending on the operating system. On Windows, the following
information appear on the screen right after the computation has started:

Running SimulationDirectory\
Started on : Thu Dec 29 15:36:44 2011

When the simulation is completed, the following information is displayed:

Running SimulationDirectory\
Started on : Thu Dec 29 15:36:44 2011

Ended on : Thu Dec 29 15:36:56 2011
Total computation time: Oh Omin 12sec

It is also possible to get information during the computation by using the following optional argument

SimSonic2DPath/SimSonic2D SimulationDirectory/ info

During the simulation, the following information is displayed, updated at each time step:

Running SimulationDirectory\
Started on : Thu Dec 29 15:36:44 2011
Computed: 0.5/1.0 us <--> Step: 67/114 Remaining time: Oh Omin 6sec

When the simulation is completed, the screen looks like the following;:
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Running SimulationDirectory\

Started on : Thu Dec 29 15:36:44 2011

Computed: 1.0/1.0 us <--> Step: 114/114 Remaining time: Oh Omin Osec
Ended on : Thu Dec 29 15:36:56 2011

Total computation time: Oh Omin 12sec

Note that the indicated remaining time is only an estimation, which is quite poor at the beginning of
the simulation, and improves during the course of the computation.

4 Tutorial

This section is still under preparation. The reader is invited to check examples available at www.simsonic.fr
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A Physical Units in SimSonic2D

SimSonic has initially been developed to simulate ultrasonic propagation in the MHz frequency range.
Accordingly, its system of units is different from the International Systems of Units. One coherent
system of units, well suited for MHz ultrasonics,is given in the following table:

base system

some derived units

Quantity
Unit

time
us

length
mm

mass
me

stress
GPa

mass density
mg.mm_3

velocity
mm. js ! MHz

frequency force

viscosity

kN kPl

All examples described in this document or on the website have been designed within this system of
units. For geophysics simulations, the following system of units is consistent in SimSonic:

base system some derived units
Quantity | length time mass | stress mass density velocity frequency force viscosity
Unit km S Gt | GPa  Gtkm™>  kms! Hz PN GP1
For simulations on the kHz range, the following system of units is consistent in SimSonic:
base system some derived units
Quantity | length time mass | stress mass density velocity frequency force viscosity
Unit m ms t GPa t.m ™3 m.ms ™! kHz GN MP1
For simulations on the pum scale, the following system of units is consistent in SimSonic:
base system some derived units
Quantity | length time mass | stress mass density velocity frequency force viscosity
Unit pm ns pg GPa pg.pm—3 pm.ns ! GHz mN Pl

For simulations on the nanometer scale, the following system of units is consistent in SimSonic:

base system

some derived units

Quantity
Unit

time
ps

length
nm

mass
10721g

stress

GPa

mass density

10~2'g.nm~

velocity

3 -1

nm.ps THz

frequency force

viscosity
mPl

nN

In all these systems of units, material properties such as mass density, rigidity constants and speeds
of sound have the same numerical values (of the order of one).
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B SimSonic2D Matlab Toolbox

The SimSonic2D Matlab toolbox contains all the necessary tools to prepare (write functions) and
analyse (read functions) a simulation. In particular, this toolbox eliminates the need to know any-
thing about the file formats used by SimSonic2D. The documentation of the functions listed in table
2 below may be found by use of the help command in Matlab, or directly in the .m files.

type function name

SimSonic2DReadMap2D
SimSonic2DReadRcv2D
SimSonic2DReadSnp2D
SimSonic2DReadSgl

SimSonic2DWriteMap2D

write functions SimSonic2DWriteRcv2D
SimSonic2DWriteSgl

read functions

Table 2: Basic Matlab SimSonic2D functions
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C File Formats

This section describes the formats of input and output files used by SimSonic2D. It is intended for
users who may want to use their own code to create and read SimSonic files. However, the SimSonic2D
matlab toolbox (see Appendix B) provides all the necessary functions to handle SimSonic2D files, and
Matlab users should therefore not pay attention to file formats used by SimSonic.

Important: ordering convention for multi-dimensional data. In all relevant files, 2-D N1 X Ny
data are ordered in the following way: the first element encoutered in the file is (0, 0), the last element
is (N7 — 1, N2 — 1). In between, elements are row-major ordered, i.e. the second dimension (Nj) is
contiguous in the file.

e geometry file: .map2D

— one integer (4 bytes) giving the value of V.
— one integer (4 bytes) giving the value of No.
— Nj X Ny chars (1 byte per char)

e single signal file: .sgl

— one integer (4 bytes) giving the number N of signal points.
— N double (8 bytes per double). The first point in the file corresponds to the first point in
time.

e array signal file: rcv2D

— one char (1 byte) giving the array normal ("1’ or '2’).
— one integer (4 bytes) giving the number N, of array elements.
— one integer (4 bytes) giving x1 start.

— one integer (4 bytes) giving x2_start.

— one integer (4 bytes) giving the elements width.

giving the spatial step Ax.

(
(
— one integer (4 bytes) giving the array pitch.
(
— one double (8 bytes
(

)
)
— one double (8 bytes) giving the temporal step At.
— N x N; doubles (8 bytes per double).

— one double (8 bytes) giving the number N; of signal points.

e snapshot file: .snp2D

giving the size Nj.

~—

— one integer (4 bytes

~—

— one integer (4 bytes) giving the size No.
— one double (8 bytes

— one double (8 bytes

giving the snapshot time (in physical time unit, usually us).

~— ~—

giving the spatial step Azx.
— one double (8 bytes) giving the temporal step At.
N7 x Ny floats (4 bytes per double).
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